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Summary

A standardized extract of Glycine max co-cultured with 
Basidiomycota (GCP®) is an isoflavone-rich soy extract. 
GCP® inhibits intracrine androgen synthesis in prostate 
cancer cells. Estrogen deficiency during menopause can 
alter lipid metabolism in the body, resulting in obesity 
and/or various disorders. In this study, the inhibitory ef-
fects of GCP® on altered lipid metabolism after menopause 
were investigated in ovariectomized C57BL/6JJmsSlc 
mice fed a high-fat diet (HFD). GCP® mice showed a signif-
icant decrease in total body weight concomitantly with 
weight loss of the perirenal adipose tissue as compared to 
that in control mice. Histological studies showed that 
GCP® inhibited HFD-induced fatty liver in these mice. 
mRNA expression levels of ATP-binding cassette protein 
G1 (ABCG1) and liver X receptor α (LXRα) were increased 
in liver of GCP® mice compared to that in control mice, 
whereas no changes were observed in the levels of ATP-
binding cassette protein A1 (ABCA1), scavenger receptor 
class B type I (SR-BI), or low-density lipoprotein receptor 
(LDLR). Our preliminary results may suggest GCP® as a 
novel functional supplement candidate for inhibition of 
HFD-induced altered lipid metabolism after the meno-
pause via the LXRα/ABCG1-dependent pathway.

Introduction

Postmenopausal women are at a higher risk of develop-
ing lipid metabolic disorders owing to endogenous estro-
gen deficiency1-4）. Estrogen receptors are expressed in 
both visceral and subcutaneous adipocytes, therefore 

changes in estrogen levels alter lipid metabolism in adi-
pose tissue of women2 ,5）. Moreover, postmenopausal wom-
en have higher visceral fat mass and subcutaneous adi-
pose tissue in the abdominal region than those of 
premenopausal women, excessive visceral fat in the abdo-
men can cause metabolic alterations, particularly in fatty 
acid metabolism2 ,6）.

A Standardized extract of Glycine max co-cultured 
with Basidiomycota (GCP®) is a soybean-rich contempo-
rary medicine that contains isoflavones such as genistein, 
daidzein, and glycitein7）. GCP® is produced by the fermen-
tation of soybean extract with the mushroom mycelium. 
This process of fermentation deglycosylates isoflavones 
and, converts them into aglycones, thereby increasing the 
absorption of these isoflavones. GCP® exerts anticancer 
activity against prostate cancer by inhibiting intracrine 
androgen synthesis8 ,9）. Furthermore, it has been reported 
that GCP® supplementation improves antioxidant status in 
postmenopausal women with diabetic retinopathy10）.

Decreased estrogen level is a prominent sign of meno-
pause in women. Estradiol (E2) is an essential estrogen for 
β-oxidation of fatty acids; however, circulating E2 levels 
decline rapidly after menopause4 ,11）. Genistein, which has 
structural resemblance to 17β-estradiol, is a major isofla-
vone of GCP®, and it exhibits a weak estrogenic activity in 
mammals12, 13）. A previous study has shown that ovariecto-
my in female mice caused fatty liver by increasing lipogen-
esis and insulin resistance in high-fat diet (HFD) fed mice 
as determined using hyperinsulinemic-euglycemic clamp, 
and administration of E2 improved hepatic steatosis and 
insulin resistance in HFD fed mice through estrogen re-
ceptor α (ERα) expression in hepatocytes14）. Moreover, ova-
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riectomized (OVX) mice showed decreased activity of en-
zymes involved in β-oxidation of fatty acids and 
transcription factors required for lipolysis4）. In this study, 
we examined the effects of GCP® on body weight and fat 
metabolism and explored the underlying mechanisms us-
ing HFD fed OVX mice as postmenopausal models. This 
study is expected to prevent impairment of lipid metabo-
lism in postmenopausal women.

Materials and methods

Preparation of GCP®

GCP® is a standard extract of Glycine max co-cultured 
with Basidiomycota, produced by Amino Up Co., Ltd. 
(Sapporo, Japan). The concentrations of genistein, daizein, 
and glycitein are 219, 112, and 47.6 µmol, respectively. The 
aglycons such as genistein, daizein, and glycitein, com-
prised 98.5% of the isoflavones of GCP® 7）.

Animals and experimental design
C57BL/6JJmsSlc OVX female mice (9-week old) were 

obtained from Japan SLC, Inc. (Hamamatsu, Japan). Mice 
were kept under the following conditions: temperature of 
24 ± 1 ℃, relative humidity of 55 ± 5%, 12 h light/dark 
cycle, and acclimatization for 8 d before the start of exper-
iments with free access to water and low-fat (10 kcal%) 
powder diet (D12450; Research Diet, Inc., New Brunswick, 
NJ). Mice were randomly divided into three groups: HFD 
(60% kcal; Control), 2% (w/w) GCP® in HFD (2% GCP®)15）, 
and 4% (w/w) GCP® in HFD (4% GCP®) (n = 5–6). Food 
consumption and body weight were measured 2–3 times 
per wk. On d 137, mice were euthanized by intraperitone-
al administration of a mixture of three anesthetic agents 
(medetomidine, midazolam, and butorphanol), and the liver 
and perirenal adipose tissues were removed and weighed. 
This study was approved by the Institutional Animal Care 
and Use Committee (approval number: kyo33-2), and con-
ducted in accordance with the Tokyo Healthcare 
University Animal Experimentation Regulations.

Histological analysis of the liver
The dissected segments of liver were fixed in 4% para-

formaldehyde–phosphate-buffered saline at 4 ℃ overnight 
and embedded in paraffin. The segments were sectioned 
into 4 µm sections using a microtome, which were then 
deparaffinized and stained using hematoxylin and eosin 
(H&E) solution.

Quantitative reverse transcription-polymerase chain re-
action (qRT-PCR)

RNA isolation
Total RNA was isolated from the liver using the SV 

Total RNA Isolation System (Promega Corporation, 
Madison, WI), and the concentration of total RNA was 
estimated using the Qubit® 3.0 Fluorometer (Thermo 
Fisher Scientific, Waltham, MA).

qRT-PCR
RNA was converted single-standard DNA (cDNA) using 

the PrimeScript™ RT Reagent Kit (Takara Bio Inc., Shiga, 
Japan) according to the manufacturer’s protocol. For qRT-
PCR, all reactions were performed in duplicate, and the 
relative amounts of mRNAs were calculated using the 
standard curve method or comparative CT method. Mouse 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
mRNA was used as an invariant control. The primer-probe 
sets used for real-time PCR are shown in Table 1.

Statistical analysis.
Data are expressed as the mean ± standard error (SE) 

(n = 5–6). Statistical significance of the differences be-
tween the three groups was determined using one-way 
analysis of variance (ANOVA), followed by Tukey’s post-
hoc test. Statistical significance was at p < 0.05.

Results

Effects of GCP® on weight of HFD fed OVX mice
OVX mice were fed HFD in the presence or absence of 

2% or 4% GCP® (w/w) for 137 d. Control mice exhibited 
significantly increased body weight. The weight was in-
creased by 2.2–2.4 folds and reached 40.4 ± 3.1 g in these 
mice. However, mice of GCP® groups had approximately 
20 g of body weight; the weight was significantly lower 
than that of the control group (approximately 50%; 
p < 0.001). Moreover, the weight of perirenal adipose tis-
sue was reduced in a dose-dependent manner in the pres-
ence of GCP® and was significantly lower than that of the 
control group (7.3% and 4.0% of the control group in 2% 
GCP® and 4% GCP® groups, respectively; p < 0.001). 
However, GCP® did not affect the liver weight in these 
mice. The food intake per day was 1.73–2.08 g in all 
groups.

Pathological changes in the liver of HFD fed OVX mice 
in the presence of GCP®

Hepatic lipid accumulation and steatosis were observed 
in hepatocytes of the control group without GCP®, as as-
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sessed using H&E staining. Most vacuoles were microste-
atotic, whereas some were macrosteatotic in appearance 
(Fig. 1). As shown in representative images, lipid accumu-
lation induced by HFD was improved by GCP®, with a 
clear reduction in abundance of lipid droplets in hepato-
cyte and lipid droplet size. In contrast, there was no differ-
ence in reduction of steatosis between the 2% and 4% 
GCP® mice fed HFD.

Effects of GCP® on mRNA expression levels of proteins 
regulating cholesterol in the liver

To study the possible mechanism of reduced body 
weight and fat accumulation in HFD fed mice in the pres-
ence of GCP®, we determined the mRNA levels of proteins 
genes regulating cholesterol in the liver on d 137. 
Administration of GCP® was associated with significant 
and dose-dependent increase in mRNA expression levels 

of ATP-binding cassette protein G1 (ABCG1), and liver X 
receptor α (LXRα) (Fig. 2; p < 0.001, control vs 2% GCP®, 
p < 0.001, control vs 4% GCP®). However, no changes were 
observed in the levels of ATP-binding cassette protein A1 
(ABCA1), scavenger receptor class B type I (SR-BI), or 
low-density lipoprotein receptor (LDLR) in HFD fed mice 
in the presence of GCP® compared to the control.

Discussion

Management of obesity and visceral fat accumulation is 
important in postmenopausal women, as they are likely to 
experience alterations in lipid metabolism, leading to obe-
sity, fatty liver, and fat redistribution owing to estrogen 
deficiency. Therefore, it is crucial to consider the associa-
tion between diet and obesity in postmenopausal women. 
In the present study, we investigated the effect of GCP®, a 

5 
 

Xu H, Zeng L, Ge J (2022) Efficacy and safety of 398 

dietary polyphenol supplementation in the treatment 399 

of non-alcoholic fatty liver disease: A systematic 400 

review and meta-Aanalysis. Front Immunol 13: 401 

949746. 402 

28) Farruggio S, Cocomazzi G, Marotta P, Romito R, 403 

Surico D, Calamita G, Bellan M, Pirisi M, Grossini E 404 

(2020) Genistein and 17β-Eestradiol protect 405 

hepatocytes from fatty degeneration by mechanisms 406 

Iinvolving mitochondria, inflammasome and kinases 407 

activation. Cell Physiol Biochem 54: 401–416. 408 

29) Pummoung S, Werawatganon D, Chayanupatkul M, 409 

Klaikeaw N, Siriviriyakul P (2020) Genistein 410 

modulated lipid metabolism, hepatic PPARγ, and 411 

adiponectin expression in bilateral ovariectomized 412 

rats with nonalcoholic steatohepatitis (NASH). 413 

Antioxidants (Basel) 10: 24. 414 

30) Baldán Á, Tarr P, Vales CS, Frank J, Shimotake TK, 415 

Hawgood S, Edwards PA (2006) Deletion of the 416 

transmembrane transporter ABCG1 results in 417 

progressive pulmonary lipidosis. J Bio Chem 281: 418 

P29401–29410. 419 

31) Hoekstra M (2020) Identification of scavenger 420 

receptor BI as a potential screening candidate for 421 

congenital primary adrenal insufficiency in humans. 422 

Am J Physiol Endocrinol Metab 319: E102–E104.  423 

32)  Goldstein JL, Brown MS (2015) A century of 424 

cholesterol and coronaries: From plaques to genes to 425 

statins. Cell 161: 161–172.  426 

33)  McCall JL, Burich RA, Mack PC (2010) GCP, a 427 

genistein-rich compound, inhibits proliferation and 428 

induces apoptosis in lymphoma cell lines. Leuk Res 429 

34: 69–76.  430 

 431 

 432 

 433 

 434 

 435 

Fig. 1. H&E-stained histologic features of HFD-induced fatty liver in OVX mice with or without GCP®  436 

The liver tissues were obtained on d 137 and representative hematoxylin and eosin staining images of the liver in OVX mice 437 

are shown. Arrows show stenotic lesions. 100× Scale bars, 200 μm 438 

Panel a; control, Panel b; 2% GCP®, and Panel c; 4% GCP® 439 

 440 
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Fig. 1.   H&E-stained histologic features of HFD-induced fatty liver in OVX mice with or without GCP® 
The liver tissues were obtained on d 137 and representative hematoxylin and eosin staining images of the liver in OVX 
mice are shown. Arrows show stenotic lesions. 100× Scale bars, 200 µm 
Panel a; control, Panel b; 2% GCP®, and Panel c; 4% GCP®

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Effects of GCP® on mRNA expression levels of proteins genes regulating cholesterols in the liver 
OVX mice were fed HFD in the presence or absence of 2% or 4% GCP® (w/w). On d 137, relative mRNA expression levels 

of ABCA1, ABCG1, SR-BI, LDLR, and LXRα in the liver determined using RT-qPCR. Data are shown as the mean ± SE. 
Statistically, these levels were compared among 3 groups by 1-way analysis of variance and Tukey's HSD test. 
***p < 0.001, Control vs the OVX-HFD-2% GCP® group and the OVX-HFD-4% GCP® group, #p < 0.05, the OVX-HFD-2% 

GCP® group vs the OVX-HFD-4% GCP® group. 
 

Fig. 2.   Effects of GCP® on mRNA expression levels of proteins regulating cholesterols in the liver 
OVX mice were fed HFD in the presence or absence of 2% or 4% GCP® (w/w). On d 137, relative mRNA expression 
levels of ABCA1, ABCG1, SR-BI, LDLR, and LXRα in the liver determined using RT-qPCR. Data are shown as the mean 
± SE. 
Statistically, these levels were compared among 3 groups by 1-way analysis of variance and Tukey’s HSD test. 
***p < 0.001, Control vs the OVX-HFD-2% GCP® group and the OVX-HFD-4% GCP® group, #p < 0.05, the OVX-HFD-2% 
GCP® group vs the OVX-HFD-4% GCP® group.
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soy isoflavone-rich extract, on HFD-fed OVX mice. We 
observed that GCP® inhibited body weight gain and con-
comitantly reduced perirenal adipose tissue weight with-
out affecting diet intake in these mice. We also showed 
that inhibition of HFD-induced fatty liver by GCP® may 
occur via a pathway dependent on LXR-α and ABCG1 
expression16）.

In premenopausal women, estrogen level in the plasma 
is not associated with cholesterol efflux capacity, however, 
estrogen deficiency during menopause increases cholester-
ol efflux capacity of HDL17-19）. Moreover, body fat distribu-
tion in women changes from predominantly subcutaneous 
to predominantly visceral distribution during menopause4）. 
Thus, hormonal changes during menopause lead to an al-
tered metabolic status. Genistein is the major isoflavone 
present in GCP® and structurally resembles 17β-estradi-
ol20）. Further study found that genistein has a strong bind-
ing affinity for ERs, and it shows estrogenic activity21）. 
These results suggested that genistein plays a key role in 
prevention of altered metabolism in HFD-fed OVX mice.

ABCA1 and ABCG1 are essential for cholesterol homeo-
stasis. ABCG1 effluxes excess cholesterol from cells to 
HDL particles for reverse cholesterol transport, which is 
the only pathway for elimination of cholesterol from the 
body16, 22-23）. ABCG1 is also important for intracellular 
transport of cholesterol22, 24 ,25）. LXRs are transcription fac-
tors that regulate intracellular cholesterol, and are induced 
by excess cholesterol26）. ABCA1 and ABCG1 have binding 
sites for LXRs on their promotors regions, and LXRs up-
regulate the expression of these cholesterol transporters. 

Estrogens maintain liver lipid and cholesterol homeostasis 
mainly via ERs, and studies have shown that E2 upregu-
lates ABCA1 and ABCG1 through LXRα21, 27-29）. In the 
present study, we observed that GCP® induced the expres-
sion of LXRα mRNA concomitantly with increased ex-
pression of ABCG1 in the liver of HFD-fed OVX mice. In 
contrast, GCP® did not affect the levels of ABCA1, SR-BI, 
and LDLR. The liver is an essential organ involved in reg-
ulating energy homeostasis. Hepatic steatosis, a major 
manifestation of metabolic syndrome, is associated with an 
imbalance between lipid formation and breakdown as well 
as cholesterol synthesis and secretion. ABCG1 is ubiqui-
tously expressed in many cell types, and studies using 
ABCG1-knockout mice have shown that ABCG1 plays a 
critical role in controlling hepatic lipid homeostasis in re-
sponse to a high-fat, high cholesterol-diet16, 30）. SR-BI binds 
HDL and mediates selective uptake of HDL cholesteryl 
ester (CE) into the liver31）, whereas LDLR regulates choles-
terol homeostasis via receptor-mediated endocytosis of 
LDL particles32）. Our results suggest that GCP® inhibits 
HFD-induced hepatic steatosis through a pathway depen-
dent on LXRα-ABCG1 but not ABCA1, LDLR, or SR-BI in 
these mice.

GCP® is known to have a variety of bioactivities, includ-
ing anti-angiogenic effects and inhibition of cancer cell 
growth7 ,10）. GCP® is commercially available and has been 
shown to exhibit low toxicity33）. Our results support the 
use of GCP® as a novel functional supplement candidate to 
inhibit HFD-induced obesity, although further detailed 
studies are required.
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Gene Forward (5' to 3') Reverse (3' to 5')

ABCA1 AAGCCAAGCATCTTCAGTTC CCATACAGCAAGAGCAGAAGG
ABCG1 ATACAGGGGAAAGGTCTCCAAT CCCCCGAGGTCTCTCTTATAGT
SR-BI GCAAATTTGGCCTGTTTGTT GATCTTGCTGAGTCCGTTCC
LDLR CCATTTTGGAGGATGAGAAC CTAGGCTGTGTGACCTTGTG
LXRα TAGGGATAGGGTTGGAGTCAG AGTTTCTTCAAGCGGATCTGT

GAPDH TGGTGAAGCAGGCATCTGAG TGCTGTTGAAGTCGCAGGAG

Paramater (g) Control 2% GCP® 4% GCP®

Initial body weight 16.8 ± 0.3
(100%)

17.1 ± 0.3
(101.8 ± 1.7%)

16.7 ± 0.2
(99.3 ± 1.0%)

Body weight on day 137 40.4 ± 3.1
(100%)

20.2 ± 0.5*
(50.0 ± 1.2%)

19.8 ± 1.1*
(49.0 ± 2.7%)

Liver weight 1.22 ± 0.14
(100%)

0.92 ± 0.05
(75.8 ± 3.7%)

1.02 ± 0.08
(83.9 ± 6.9%)

Perirenal adipose tissue weight 1.07 ± 0.13
(100%)

0.08 ± 0.01*
(7.3 ± 0.7%)

0.04 ± 0.02*
(4.0 ± 2.0%)

Table 1.  Primers for quantitative real time RT-PCR analysis
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Gene Forward (5' to 3') Reverse (3' to 5')

ABCA1 AAGCCAAGCATCTTCAGTTC CCATACAGCAAGAGCAGAAGG
ABCG1 ATACAGGGGAAAGGTCTCCAAT CCCCCGAGGTCTCTCTTATAGT
SR-BI GCAAATTTGGCCTGTTTGTT GATCTTGCTGAGTCCGTTCC
LDLR CCATTTTGGAGGATGAGAAC CTAGGCTGTGTGACCTTGTG
LXRα TAGGGATAGGGTTGGAGTCAG AGTTTCTTCAAGCGGATCTGT

GAPDH TGGTGAAGCAGGCATCTGAG TGCTGTTGAAGTCGCAGGAG

Paramater (g) Control 2% GCP® 4% GCP®

Initial body weight 16.8 ± 0.3
(100%)

17.1 ± 0.3
(101.8 ± 1.7%)

16.7 ± 0.2
(99.3 ± 1.0%)

Body weight on day 137 40.4 ± 3.1
(100%)

20.2 ± 0.5*
(50.0 ± 1.2%)

19.8 ± 1.1*
(49.0 ± 2.7%)

Liver weight 1.22 ± 0.14
(100%)

0.92 ± 0.05
(75.8 ± 3.7%)

1.02 ± 0.08
(83.9 ± 6.9%)

Perirenal adipose tissue weight 1.07 ± 0.13
(100%)

0.08 ± 0.01*
(7.3 ± 0.7%)

0.04 ± 0.02*
(4.0 ± 2.0%)

Table 2.  Effects of GCP® on ovariectomized mice fed HFD
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Ovariectomized mice (9 weeks old female 
C57BL/6JJmsSlc, 16.0-17.9 g) were randomly divided into 
control group (Control), 2% (w/w) GCP®, and 4% GCP®. 
The mice were euthanized intraperitoneally on d 137 as 
described in the Materials and methods, and the liver and 
perirenal adipose tissue were removed and weighed. Data 
are expressed as mean ± standard error (SE).　Differenc-
es in these weights between Control and 2% or 4% GCP® 
group were analyzed by one-way analysis of variance and 
Tukey’s HSD test. * p < 0.001, Control vs the GCP® group.
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