クズ(Pueraria lobata) でんぷんの湿熱処理に伴う調理科学的特性の変化

村 元 由佳利¹⁾, 大 谷 貴美子¹⁾, 稲 村 真 弥¹⁾, 杉 本 温 美²⁾,
 岩 城 啓 子³⁾, 饗 庭 照 美⁴⁾, 冨 田 圭 子¹⁾, 松 井 元 子¹⁾
 (¹⁾京都府立大学大学院生命環境科学研究科応用生命科学専攻^{*}, ²⁾近畿大学農学部食品栄養学科^{***}
 ³⁾畿央大学健康科学部健康栄養学科^{***}, ⁴⁾京都光華女子大学健康科学部健康栄養学科^{****})

Characterization of Cooking Properties of Heat/moisture-treated Kuzu (Pueraria lobata) Starch

Yukari MURAMOTO¹⁾, Kimiko OHTANI¹⁾, Maya INAMURA¹⁾, Yoshimi SUGIMOTO²⁾, Keiko Iwaki³⁾, Terumi AIBA⁴⁾, Keiko Tomita¹⁾ and Motoko Matsul¹⁾

¹⁾Graduate School of Kyoto Prefectural University, ²⁾Kinki University, ³⁾Kio University, ⁴⁾Kyoto Koka Women's University

Summary

Kuzu (Pueraria lobata) starch, an important ingredient of Japanese confectionery, is said to show superior cooking properties by storage at room temperature to new one. And heat/moisture-treatment (HMT) is well known to give starch granules different properties. In this study, the cooking properties of HMT *Kuzu* starch at 120 °C for from 10 min to 120 min were investigated.

The longer starch was treated, the more color of starch changed to yellowish. X-ray diffraction patterns were changed from type C_A to type A. In addition, the particle size distribution percentage of HMT *Kuzu* starch increased in larger one depending on the treated time. Although the hardness and adhesiveness of HMT *Kuzu* starch-sol were not so different just after preparation from those of untreated one, their hardness and adhesiveness increased rapidly under storage at 35 °C depending on HMT time. Rapid Visco Analyzer (RVA) showed that HMT significantly (p < 0.005) increased their gelatinization temperature and lower peak viscosity depending on HMT time.

クズはマメ科クズ属のつる性多年草植物で,秋の七草の 一つである。クズの名は古代からのクズの産地である奈良 県吉野の国栖 [くず] が由来になったといわれている。夏 には甘い芳香を発する紫紅色の可憐な花を咲かせ,秋から 冬にかけて根にでんぷんを蓄える。良質な根は紡錘形で, でんぷん製造には中央部の肥大した部分が用いられる¹¹。 クズには,解熱,解毒,下痢止めなどの薬効が知られてお り,クズの根を乾燥させたものは葛根(かっこん)と呼ば れ,古くより漢方薬として用いられてきた。

クズでんぷんは,奈良県吉野地方及びその周辺地域で 『吉野晒』という製法によって作られた吉野葛が有名だが, 吉野クズの歴史は古く,奈良時代に書かれた日本最古の歴 史書である「古事記」にも登場する。また,江戸時代の日 本山海名産絵図にも,「クズは吉野から出すものが上品」 と記されている。クズでんぷんは一般的なジャガイモでん ぷんに比べて透明感があり、風味・食感が良く、古くから 和菓子の材料として貴重で欠かせないものとされてきた。

ところで、クズでんぷんを利用する菓子職人や料理人の 間では、クズでんぷんは、新しいものより数年間貯蔵した クズでんぷんの方がこしがあり、利用しやすいと言われて きた。そこでわれわれは先に貯蔵クズでんぷんと新クズで んぷんの調理科学的特性の違いについて報告を行った²⁰。 でんぷんは湿熱処理することで、でんぷん分子鎖の移動や 再配列が起こり、結晶化度が変化しその特性が大きく変化 することが報告されている³⁻¹³⁾。そこで、本研究では、ク ズでんぷんの貯蔵による調理科学的特性の変化のメカニズ ムを明らかにすることを目的とし、湿熱処理したクズでん ぷんの調理科学的特性の変化について報告する。

^{*}所在地:京都市左京区下鴨半木町1-5 (〒606-8522)

^{**}所在地:奈良市中町3327-204 (〒631-8505)

^{***}所在地:北葛城郡広陵町馬見中4-2-2 (〒635-0832)

^{****}所在地:京都市右京区西京極葛野町38 (〒615-0882)

1. 試料の調製

クズでんぷんは㈱八十吉製(奈良県,吉野)の,平成19 年産の本葛粉を使用し,これを未処理でんぷん(Untreated)として,相対湿度100%,120℃にて,それぞれ10, 30,60,120分間オートクレーブにて処理したものを,湿 熱処理でんぷん(HMT120℃-10,-30,-60,-120min) とした。

2. 一般的特性の測定

でんぷんの表面色を、各試料を乳鉢で粉末状にすりつぶ した後、シャーレに充填し、色彩色差計(CR-300㈱ミノ ルタ)を用いて測色し、白色度、黄色度¹⁴⁾を求めた。値 は5回の測定の平均値で示し、群間の差の検定はt-検定に より行った。

水分含量はメカニカルオーブン(KLO-45K 北洋サーモ システム(㈱)を用いて、135℃常圧加熱乾燥法により測定 した。値は3回の測定の平均値で示し、群間の差の検定は t-検定により行った。

でんぷんの水への溶解度を,各試料に蒸留水を加え15分 間膨潤させたのち,3,000 rpmで15分間遠心分離し,上 清中に溶解した糖量をフェノール硫酸法¹⁵⁾にてグルコー ス当量として求めた。値は3回の測定の平均値で示し,群 間の差の検定はt-検定により行った。

3. でんぷんゾルの物性

各試料を 10%懸濁液となるように調製し, 15 分間室温で 膨潤させ, 200 rpm で撹拌(マゼラ EYELA ZN-1300 マリ ン翼(直径 5 cm))しながら,ホットプレート(CORNING PC-420)を用い,約90℃まで加熱(25 分間)して完全に 糊化させた。これを直径 40 mm,高さ 15 mmの測定用 シャーレに入れ,ラップをかぶせ 35℃で保存し,保存開 始から経時的(15 分ごとに 3.5 時間まで)に,でんぷんゾ ルの硬さと付着性,凝集性を測定した。測定には,(株山電 製クリープメータ RE2-3305Bを用い,厚生労働省「特別用 途食品の表示許可等について」のえん下困難者用食品の試 験方法¹⁶⁾に準じ,プランジャー No.56(ϕ 20 mm × 8 mm 円板形)を用い,格納ピッチ 0.01 sec,測定歪率 66.7%, 測定速度 10 mm/sec で測定を行った。

4. でんぷんの糊化特性

各試料の 10%懸濁液を調製し, RVA (ラピッドビスコ アナライザー NEWPORT SCIENTIFIC)を用いて測定し た。温度プログラムは、セットポイント温度 30℃,最高 温度 95℃,セットバック温度 50℃,最高温度保持時間 6 分,セットバック保持時間 10分,昇温・降温速度ともに 5℃/sec である。値は 3 回の測定の平均値で示し、群間の 差の検定は t-検定により行った。

また、各試料の25%懸濁液を調製し、示差走査熱量計

DSC-60 (SHIMADZU 製) を用いて、30~90℃の温度範 囲、昇温速度5℃/min で、糊化時の吸熱量を測定した。

5. でんぷんの酵素分解性

1) α-アミラーゼ

各でんぷん試料 50 mg に 0.02 M リン酸緩衝液 (pH 7.2) を 0.5 mL 加え、30 分間緩衝液になじませた後、3 % パン クレアチン/0.03 M NaCl-酢酸カルシウム混液を1 mL 加 え、37 ℃で 24 hr 反応させた。氷冷により反応停止後、反 応液を 3,000 rpm で 15 分間遠心分離に供し、上清に遊離 された糖量をフェノール硫酸法¹⁵⁾ で求めた。対照には酵 素溶液の代わりに 0.03 M NaCl-酢酸カルシウム混液 1 mL を加えた。

2) β-アミラーゼ

測定法は中村、貝沼らの方法¹⁷⁾ に準じ、 β アミラーゼ (sweet potato E.C.3.2.1.2)を用い、沸騰水浴中で10分間加 熱して反応停止後、反応液に3倍容のエタノール溶液を加 え、沈殿部分を β -リミットデキストリンとして、Sephadex G-75(ϕ 3 cm×100 cm)カラムに供した。溶媒には0.2% NaCl-0.02 N NaOHを用いた。また上清中に遊離されたマル トースの量をフェノール硫酸法¹⁵⁾にて、還元末端の数を Somogyi-Nelson 法¹⁸⁻²⁰⁾により求め、分解率を算出した。

6. でんぷん粒の観察

各試料をオスミウムコーターにて膜厚 10 nm でオスミウ ムコーティングを行った後,日立超高分解能電界放出型走 査電子顕微鏡 S-4800 FE-SEM を用いて,加速電圧 2.0 kV, 電流 10 μA の条件下ででんぷん粒の観察を行った。

さらに、でんぷん粒の粒度分布を、レーザ回折式粒度分 布測定装置 (SALD-2200 SHIMADZU)を用いて測定した。

でんぷん粒の結晶構造を明らかにする目的で,粉末X線回 折装置(X-RAY DIFFRACTOMETER RINT2500 RIGAKU) を用いて,X線管球:Cu,電圧:30 kV,電流:26 mA, 走査速度:1°/min,走査範囲:4~32°,スキャンスピー ド:1°/minでX線回折図形を求めた。

結果と考察

1. 湿熱処理したでんぷんの一般的特性

湿熱処理した各試料の色,水分含量,水可溶性糖量の変 化を Table 1 に示した。未処理でんぷんの白色度,黄色度 は 88.1,4.9 であったが,湿熱処理 120℃-120 分では 83.8, 7.7 となり,湿熱処理の時間が長くなるにつれて白色度は 低下し,黄色度が上昇した。クズでんぷんには 0.2%のタ ンパク質が含まれており,湿熱処理によりメイラード反応 が生じたためと考えられる。また,水分含量は未処理でん ぷんでは約 16%であり,湿熱処理による一定の傾向は認 められなかったが,水可溶性糖量は湿熱処理により増加し た。

Table 1 General properties of Kuzu starches

	Untreated	HMT (120°C)				
		10 min	30 min	60 min	120 min	
Whiteness	88.1	88.2	87.3**	86.1**	83.8**	
Yellowness	4.9	5.0	5.6**	6.4**	7.7**	
Water content (%)	16.1	14.4*	13.7**	13.4**	18.8*	
Water soluble carbohydrate (%)	0.04	0.05	0.05	0.05	0.17	

Significant difference from the untreated: *p < 0.005, **p < 0.001.

2. ゾルの物性

各でんぷんゾルの硬さの経時変化を Fig. 1 に示した。調 製したゾルは 35℃に保存している間に老化しゲルへと変化 したため、時間経過につれて硬さは上昇したが、100 分を 経過するとほぼ一定となった。とくに湿熱処理でんぷんの ゾルは、ゾル調製直後の硬さは未処理でんぷんと同程度で あったものの、未処理でんぷんと比べて、急速に硬くなり、 この変化は湿熱処理の時間が長くなるにつれて顕著であっ た。つまり、湿熱処理されたでんぷんの老化の早さが示唆 された。このことは湿熱処理 120℃-120 分のでんぷんゾル では測定時にゲルの崩壊が観察されたことからも示唆された。

各でんぷんのゾルの付着性の経時変化を Fig. 2 に示した。 硬さと同様に付着性もゾル調製直後は未処理でんぷんと湿 熱処理でんぷんは類似した値を示していたが、未処理でん ぷんのゾルの付着性は時間経過に伴い低下傾向を示したの に対し、湿熱処理でんぷんでは、逆に湿熱処理の時間が長 くなるにつれて付着性は増加傾向を示した。Table 1 に示 すように,湿熱処理でんぷんの水可溶性糖量が増加してい ることから,このことはでんぷんの一部が湿熱処理によっ て分解され,ゲルが老化する際に,デキストリンが離漿水 とともにゲルの表面を覆ったためではないかと考えられる が,この点については,今後,さらに検討する予定である。

凝集性の変化は Fig. 3 に示したが,時間経過による変 化は認められず,また未処理でんぷんと湿熱処理でんぷん に差は認められなかった。

3. 糊化特性

RVA による糊化特性は Table 2 に示したとおりである。 未処理でんぷんの糊化開始温度は74.0℃,最高粘度は 511.8 RVU であったが,湿熱処理でんぷんでは,湿熱処理 の時間が長くなるにつれて糊化開始温度が上昇し,最高粘 度が低下した。さらに,湿熱処理でんぷんではセットバッ

Fig. 2 Changes of the adhesiveness under storage at 35 °C

	Untreated -	HMT (120°C)				
		10 min	30 min	60 min	120 min	
Peak viscosity (RVU)	511.8	458.5**	332.6**	294.1**	233.6**	
Minimum viscosity (RVU)	182.2	218.8*	226.2*	225.1**	192.1	
Break down (RVU)	329.6	239.7**	106.4**	68.9**	41.4**	
Final viscosity (RVU)	278.0	337.5	366.6**	362.4**	299.9	
Setback (RVU)	95.8	118.7	140.4*	137.3*	107.7**	
Gelatinization temperature (${}^{\circ}\!\!{}^{\circ}\!\!{}^{\circ}\!\!{}^{\circ}$	74.0	76.6*	78.3**	79.6**	81.1**	
Peak temperature ($^{\circ}$)	87.1	88.3	91.4	95.0**	95.0**	

Table 2 Gelatinization properties of Kuzu starches (10%) by RVA

Significant difference from the untreated: *p < 0.005, **p < 0.001.

Table 3 Characteristics of differential scanning calorimetry of Kuzu starches

	Untrooted	HMT (120°C)			
	Untreated -	10 min	30 min	60 min	120 min
$T_{o}(^{\circ}C)$	68.35	65.71	68.90	69.73	72.75
$T_{p}(^{\circ}C)$	75.83	77.04	77.59	78.71	81.28
T_{c} (°C)	82.24	82.81	83.50	84.61	86.40
$ m m H\left(mJ/mg ight)$	12.15	9.43	8.31	8.57	9.94

 $T_o: Onset \ temperature, \ T_p: Peak \ temperature, \ T_c: Conclusion \ temperature, \ {\bigtriangleup}H: Endothermic \ energy.$

Table 4 Characteristics of crystal structure of Kuzu starches

	TT 1	HMT (120℃)			
	Untreated -	10 min	30 min	60 min	120 min
α-amylase degradation (%)	66.5	88.0	88.8	86.2	91.6
β -amylase degradation (%)	72.5	69.6	64.1	66.0	71.2
X-ray diffraction pattern	CA	А	А	А	А
50%D granular size (µm)	16	14	17	19	22

ク値が上昇しており、このことからも未処理でんぷんに比 べ老化しやすいことが示された。

馬鈴薯でんぷんでは湿熱処理によって糊化開始温度が高 温側に移り,最高粘度が低下することが報告されている が¹³⁾,クズでんぷんでも湿熱処理により同様の変化が起 こっていることが示唆された。

各試料の DSC 測定結果は Table 3 に示したとおりであ るが, RVA での結果と同様に, 湿熱処理の時間が長くな るにつれて糊化開始温度は上昇傾向を示した。また糊化エ ンタルピーは未処理でんぷんで 12.15 であったのに対し湿 熱処理でんぷんでは, 8.31~9.94 に低下した。でんぷん は湿熱処理により糊化エンタルピーが低下すると言われ ており²¹⁾,本研究においても同様の結果であった。

4. 酵素分解性

各酵素による分解率を Table 4 に示した。α-アミラーゼ 分解率は未処理でんぷんで 66.5%, 湿熱処理でんぷんで 86.2~91.6%となり, 湿熱処理の時間が長くなるにつれて 上昇傾向が認められた。一般的に, クズでんぷんのβ-ア ミラーゼ分解限度はアミロース部分が約75%, アミロペ クチン部分が約57%と報告²¹⁾されているが,本研究での β-アミラーゼの分解率は未処理でんぷんで72.5%となり, 湿熱処理によりわずかに低下傾向を示したが, ほとんど変 化はなかった。

Fig. 5 Elution pattern on sephadex G-75 column (ϕ 3 cm \times 100 cm) of Kuzu starches debranched

5. 分子量分布

各でんぷんのゲルろ過による溶出パターンには差は認め られなかった (Fig. 4) が, 各 β-リミットデキストリンは 湿熱処理の時間が長くなるにつれて分布範囲が広がった (Fig. 5)。このことは、β-アミラーゼ分解率が湿熱処理に よりわずかに低下傾向を示したこととの関連が示唆された が、この点については今後さらに検討する。

6. でんぷん粒としての特性

with β -amylase

各試料の電子顕微鏡写真を Fig. 6 に, 粒度分布の中央 値を Table 4 に示した。未処理でんぷんと比較し、湿熱処 理でんぷんは大きく膨潤したでんぷん粒が観察され、粒度 分布からも湿熱処理によって大きなでんぷん粒が増えてい ることが示された。しかし小さい粒も残っており、でんぷ ん粒の分布範囲が広がり、不均一化が顕著になっているこ とが示された。このことからα-アミラーゼの分解率が上 昇したのは、湿熱処理によってでんぷん粒が膨潤したため ではないかと考えられた。

7. 結晶構造

各試料のX線回折図形の結果より未処理でんぷんはCA 図形(Aに近いC図形)で、湿熱処理でんぷんはA図形 であることが示され、湿熱処理することで CA 図形から A

図形に変化することが明 らかとなった (Table 4)。 馬鈴薯でんぷんを湿熱処 理すると、X線回折図形 がB図形からA図形に変 化すると言われているが 21) クズでんぷんでも同様の 変化が起きていることが 示された。

of Kuzu starch granules $(\times 3,000)$ a: Untreated, b: HMT120°C-10min,

c: HMT120℃-30min, d: HMT120℃ -60 min, e: HMT120 °C -120 min.

また、先にも述べたよ うに湿熱処理によりでん ぷんの溶解度が上昇して

いることから(Table 1), 湿熱処理によってでんぷん分子 鎖が切れている可能性が示唆された。

貯蔵クズでんぷんでは付着性や糊化開始温度に大きな変 化は認められず、老化の指標であるセットバック値が低下 を示す²⁾など、湿熱処理によるクズでんぷんの変化は貯 蔵によるクズでんぷんの変化とは異なることが示唆された。 しかし、湿熱処理と貯蔵によるクズでんぷんの変化のメカ ニズムを明らかにするにはいまだ不十分であり,現在, 貯 蔵によるクズでんぷんの調理科学的特性の変化についてさ らなる検討を行っている。

菓子職人や料理人が経験的に感じているクズでんぷんの 貯蔵による調理科学的特性の変化のメカニズムを明らかに することを目的とし、湿熱処理したクズでんぷんの調理科 学的特性の変化を検討した。

クズでんぷんの一般的特性として、湿熱処理により水分 含量の増減と褐変が認められた。また、湿熱処理によるク ズでんぷんの調理特性の変化を確認する目的ででんぷんゾ ルの物性を測定した結果、湿熱処理したでんぷんは老化が 早く、時間経過とともに早く硬いゲルになることが示され たが、ゲル表面の付着性が高いことが明らかとなった。ま た RVA の結果より湿熱処理でんぷんは湿熱処理時間が長 くなるにつれて糊化開始温度が高く、最高粘度が低くなり、 セットバック値が上昇し、このことからも湿熱処理でんぷ んは未処理でんぷんに比べ、老化しやすいことが示された。 また、糊化開始温度が高いにもかかわらず糊化エンタル ピーが低下したことから、湿熱処理により一部のでんぷん がすでに糊化している可能性が考えられた。以上のように 湿熱処理することでクズでんぷんの糊化特性すなわち調理 特性は変化することが明らかとなった。このことはα-ア ミラーゼ分解率が湿熱処理により上昇したこと、電子顕微 鏡によるでんぷん粒の観察から、でんぷん粒が一部大きく 膨潤していることとも一致する。

さらに結晶構造に関しては、X線回折図形を測定したと ころ、未処理でんぷんではC_A図形であったものが、湿熱 処理によってA図形に変化することが明らかとなった。 湿熱処理によりでんぷん粒が一部膨潤したことで、でんぷ ん粒の不均一化が顕著となった。また、溶解度や分子量分 布の結果より、湿熱処理によってでんぷん分子鎖が切れて いる可能性が示唆された。

これらの湿熱処理によるクズでんぷんの調理科学的特性 の変化は、すでに報告した貯蔵によるクズでんぷんの調理 科学的特性の変化とは異なることが示唆され、このことに ついては現在さらに検討中である。

参考文献

- 農文協(2009)食品加工総覧加工品編,第4巻,農 山漁村文化協会.
- 日本家政学会関西支部(2009)第30回研究発表会 講 演要旨集:pp.15.
- Sair L (1967) Heat-moisture treatment of starch. Cereal Chem 44: 8-26.
- Abraham TE (1993) Stabilization of paste viscosity of cassava starch by heat moisture treatment. Starch/ stärke 45: 131-135.

- 5) Kawabata A, Takase N, Miyoshi E, Sawayama S, Kimura T, Kudo K (1994) Microscopic observation and X-Ray diffractometry of heat/moisture-treated starch granules. Starch/stärke 46: 463-469.
- 6) 川端晶子,阿久澤さゆり,矢崎利昭,大坪泰文 (1996) 湿熱処理澱粉のゾルーゲル転移と弾性.応用糖質科学 43:479-485.
- 7)相川りゑ子,阿久澤さゆり,澤山 茂,川端晶子 (1999)湿熱処理カタクリ澱粉の糊化特性とゾルーゲル 転移点近傍の弾性挙動.応用糖質科学46:151-157.
- 8) 萩原滋子,江崎君子,北村進一,久下 喬 (1992) 湿 熱処理澱粉粒の物性および被酵素消化性.澱粉科学 39:175-182.
- 9)小林恒夫(1993)湿熱処理澱粉の膵臓α-アミラーゼによる分解性と湿熱処理による抵抗性澱粉の生成.澱粉科学40:285-290.
- Kulp K, Lorenz K (1981) Heat-moisture treatment of starches 1, physicochemical properties. Cereal Chem 58: 46-48.
- Donovan JW, Lorenz K, Kulp K (1983) Differential scanning calorimetry of heat-moisture treated wheat and potato starches. Cereal Chem 60: 381–387.
- 12)川端晶子,高瀬直明,阿久澤さゆり,澤山 茂(1996) 湿熱処理馬鈴薯およびトウモロコシ澱粉の糊化特性. 応用糖質科学 43:471-477.
- 13) 久下 喬, 北村進一 (1985) 澱粉粒のアニーリング— 温水処理と湿熱処理. 澱粉科学 32:65-83.
- 14)日本色彩学会編(1998)新編色彩科学ハンドブック 第2版,東京大学出版会,東京.
- 15) Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356.
- 16) 厚生労働省(2009)特別用途食品の表示許可等について.pp. 20,(http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/hokenkinou/dl/28.pdfよりダウンロード)
- 17) 中村道徳・貝沼圭二編(1986) 生物化学実験法 19 澱粉・関連糖質実験法,学会出版センター,東京.
- Nelson N (1944) A photometric adaptation of the somogyi method for the determination of glucose. J Biol Chem 153: 375–380.
- Somogyi M (1945) A new reagent for the determination of sugars. J Biol Chem 160: 61–68.
- Somogyi M (1952) Notes on sugar determination. J Biol Chem 195: 19-23.
- 不破英次,小巻利章,檜作 進,貝沼圭二編集(2003) 澱粉科学の事典,朝倉書店,東京.